509 research outputs found

    Effects of X-ray irradiation and disk flaring on the [NeII] 12.8 micron emission from young stellar objects

    Full text link
    The [Ne II] fine-structure emission line at 12.8 micron has been detected in several young stellar objects (YSO) spectra. This line is thought to be produced by X-ray irradiation of the warm protoplanetary disk atmospheres, however the observational correlation between [Ne II] luminosities and measured X-ray luminosities shows a large scatter. Such spread limits the utility of this line as a probe of the gaseous phase of disks, as several authors have suggested pollution by outflows as a probable cause of the observed scatter. In this work we explore the possibility that the large variations in the observed [Ne II] luminosity may be caused instead by different star-disk parameters. In particular we study the effects that the hardness of the irradiating source and the structure (flaring) of the disk have on the luminosity and spectral profile of the [Ne II] 12.8 micron line. We find that varying these parameter can indeed cause up to an order of magnitude variation in the emission luminosities which may explain the scatter observed, although our models predict somewhat smaller luminosities than those recently reported by other authors who observed the line with the Spitzer Space Telescope. Our models also show that the hardness of the spectrum has only a limited (undetectable) effect on the line profiles, while changes in the flaring power of the disk significantly affect the size of the [Ne II] emission region and, as a consequence, its line profile. In particular we suggest that broad line profiles centred on the stellar radial velocity may be indicative of flat disks seen at large inclination angles.Comment: 9 pages, 8 figures. accepted for publication in MNRA

    Can grain growth explain transition disks?

    Full text link
    Aims: Grain growth has been suggested as one possible explanation for the diminished dust optical depths in the inner regions of protoplanetary "transition" disks. In this work, we directly test this hypothesis in the context of current models of grain growth and transport. Methods: A set of dust evolution models with different disk shapes, masses, turbulence parameters, and drift efficiencies is combined with radiative transfer calculations in order to derive theoretical spectral energy distributions (SEDs) and images. Results: We find that grain growth and transport effects can indeed produce dips in the infrared SED, as typically found in observations of transition disks. Our models achieve the necessary reduction of mass in small dust by producing larger grains, yet not large enough to be fragmenting efficiently. However, this population of large grains is still detectable at millimeter wavelengths. Even if perfect sticking is assumed and radial drift is neglected, a large population of dust grains is left behind because the time scales on which they are swept up by the larger grains are too long. This mechanism thus fails to reproduce the large emission cavities observed in recent millimeter-wave interferometric images of accreting transition disks.Comment: 11 pages, 5 figures, accepted to A&

    The timing and location of dust formation in the remnant of SN 1987A

    Get PDF
    The discovery with the {\it Herschel Space Observatory} of bright far infrared and submm emission from the ejecta of the core collapse supernova SN\,1987A has been interpreted as indicating the presence of some 0.4--0.7\,M_\odot of dust. We have constructed radiative transfer models of the ejecta to fit optical to far-infrared observations from the literature at epochs between 615 days and 24 years after the explosion, to determine when and where this unexpectedly large amount of dust formed. We find that the observations by day 1153 are consistent with the presence of 3×\times103^{-3}M_\odot of dust. Although this is a larger amount than has previously been considered possible at this epoch, it is still very small compared to the amount present in the remnant after 24 years, and significantly higher dust masses at the earlier epochs are firmly ruled out by the observations, indicating that the majority of the dust must have formed at very late times. By 8515-9200 days after the explosion, 0.6--0.8\,M_\odot of dust is present, and dust grains with radii greater than 2\,μ\mum are required to obtain a fit to the observed SED. This suggests that the dust mass increase at late times was caused by accretion onto and coagulation of the dust grains formed at earlier epochs. These findings provide further confirmation that core collapse supernovae can create large quantities of dust, and indicate that the reason for small dust masses being estimated in many cases is that the vast majority of the dust forms long after most supernovae have been detectable at mid-infrared wavelengths.Comment: 13 pages, 16 figures. Accepted for publication in MNRA

    Three-Dimensional Ionisation, Dust RT and Chemical Modelling of Planetary Nebulae

    Get PDF
    The assumption of spherical symmetry is not justified for the vast majority of PNe. The interpretation of spatially-resolved observations cannot rely solely on the application of 1D codes, which may yield incorrect abundances determinations resulting in misleading conclusions. The 3D photoionisation code MOCASSIN (Monte CAarlo SimulationS of ionised Nebulae) is designed to remedy these shortcomings. The 3D transfer of both primary and secondary radiation is treated self-consistently without the need of approximations. The code was benchmarked and has been applied to the study of several PNe. The current version includes a fully self-consistent radiative transfer treatment for dust grains mixed within the gas, taking into account the microphysics of dust-gas interactions within the geometry-independent Monte Carlo transfer. The new code provides an excellent tool for the self-consistent analysis of dusty ionised regions showing asymmetries and/or density and chemical inhomogeneities. Work is currently in progress to incorporate the processes that dominate the thermal balance of photo-dissociation regions (PDRs), as well as the formation and destruction processes for all the main molecular species.Comment: 3 pages, to appear in Proc. IAU Symp. 234, Planetary Nebulae in Our Galaxy and Beyond (3-7 Apr 2006), eds. M.J. Barlow & R.H. Mendez (Cambridge Univ. Press

    Testing protoplanetary disc dispersal with radio emission

    Full text link
    We consider continuum free-free radio emission from the upper atmosphere of protoplanetary discs as a probe of the ionized luminosity impinging upon the disc. Making use of previously computed hydrodynamic models of disc photoevaporation within the framework of EUV and X-ray irradiation, we use radiative transfer post-processing techniques to predict the expected free-free emission from protoplanetary discs. In general, the free-free luminosity scales roughly linearly with ionizing luminosity in both EUV and X-ray driven scenarios, where the emission dominates over the dust tail of the disc and is partial optically thin at cm wavelengths. We perform a test observation of GM Aur at 14-18 Ghz and detect an excess of radio emission above the dust tail to a very high level of confidence. The observed flux density and spectral index are consistent with free-free emission from the ionized disc in either the EUV or X-ray driven scenario. Finally, we suggest a possible route to testing the EUV and X-ray driven dispersal model of protoplanetary discs, by combining observed free-free flux densities with measurements of mass-accretion rates. On the point of disc dispersal one would expect to find a M_dot^2 scaling with free-free flux in the case of EUV driven disc dispersal or a M_dot scaling in the case of X-ray driven disc dispersal.Comment: Accepted MNRAS, 12 pages, 11 figures, (pdf generation fixed

    3D Photoionisation Modelling of NGC 6302

    Full text link
    We present a three-dimensional photoionisation and dust radiative transfer model of NGC 6302, an extreme, high-excitation planetary nebula. We use the 3D photoionisation code Mocassin} to model the emission from the gas and dust. We have produced a good fit to the optical emission-line spectrum, from which we derived a density distribution for the nebula. A fit to the infrared coronal lines places strong constraints on the properties of the unseen ionising source. We find the best fit comes from using a 220,000 K hydrogen-deficient central star model atmosphere, indicating that the central star of this PN may have undergone a late thermal pulse. We have also fitted the overall shape of the ISO spectrum of NGC 6302 using a dust model with a shallow power-law size distribution and grains up to 1.0 micron in size. To obtain a good fit to the infrared SED the dust must be sufficiently recessed within the circumstellar disk to prevent large amounts of hot dust at short wavelengths, a region where the ISO spectrum is particularly lacking. These and other discoveries are helping to unveil many properties of this extreme object and trace it's evolutionary history.Comment: 8 pages, 4 figures; for the proceedings of "Asymmetric Planetary Nebuale IV," R. L. M. Corradi, A. Manchado, N. Soker ed

    On the Detectability of Oxygen X-ray Fluorescence and its Use as a Solar Photospheric Abundance Diagnostic

    Full text link
    Monte Carlo calculations of the O Kalpha line fluoresced by coronal X-rays and emitted just above the temperature minimum region of the solar atmosphere have been employed to investigate the use of this feature as an abundance diagnostic. While quite weak, we estimate line equivalent widths in the range 0.02-0.2 AA, depending on the X-ray plasma temperature. The line remains essentially uncontaminated by blends for coronal temperatures T =< 3e6 K and should be quite observable, with a flux >~ 2 ph/s/arcmin^2. Model calculations for solar chemical mixtures with an O abundance adjusted up and down by a factor of 2 indicate 35-60% changes in O Kalpha line equivalent width, providing a potentially useful O abundance diagnostic. Sensitivity of equivalent width to differences between recently recommended chemical compositions with ``high'' and ``low'' complements of the CNO trio important for interpreting helioseismological observations is less accute, amounting to 20-26% at coronal temperatures T ~< 2e6 K. While still feasible for discriminating between these two mixtures, uncertainties in measured line equivalent widths and in the models used for interpretation would need to be significantly less than 20%. Provided a sensitive X-ray spectrometer with resolving power >= 1000 and suitably well-behaved instrumental profile can be built, X-ray fluorescence presents a viable means for resolving the solar ``oxygen crisis''.Comment: To appear in the Astrophysical Journa

    Mocassin: A fully three-dimensional Monte Carlo photoionization code

    Get PDF
    The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitraries geometry and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of tretating on or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this paper. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot et al., 1986; Ferland et al., 1995; Pequignot et al., 2001)\citep{pequignot86,ferland95, pequignot01}. The results obtained for the benchmark cases are satisfactory and are presented in this paper. A performance analysis has also been carried out and is discussed here.Comment: 17 pages, 4 figures, 1 appendix Changes: appendix adde

    Dust yields in clumpy SN shells: SN 1987A revisited

    Get PDF
    We present a study of the effects of clumping on the emergent spectral energy distribution (SED) from dusty supernova (SN) shells illuminated by a diffuse radiation source distributed throughout the medium. (...) The fully 3D radiation transport problem is solved using a Monte Carlo code, MOCASSIN, and we present a set of models aimed at investigating the sensitivity of the SEDs to various clumping parameters. We find that, contrary to the predictions of analytical prescriptions, the combination of an optical and IR observational data set is sufficient to constrain dust masses even in the case where optically thick clumps are present. Using both smoothly varying and clumped grain density distributions, we obtain new estimates for the mass of dust condensed by the Type II SN 1987A by fitting the optical and infrared spectrophotometric data of Wooden et al. (1993) at two epochs (day 615 and day 775). (...) From our numerical models we derive dust masses for SN 1987A that are comparable to previous analytic clumped graphite grain mass estimates, and at least two orders of magnitude below the 0.1-0.3 Msol that have been predicted to condense as dust grains in primordial core collapse supernova ejecta. This low condensation efficiency for SN 1987A is in contrast to the case of SN 2003gd, for which a dust condensation efficiency as large as 0.12 has recently been estimated. (Abridged)Comment: accepted for publication in MNRAS. The paper contains 15 figures and 1 tabl
    corecore